If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(x^2-6x-9)=0
We multiply parentheses
3x^2-18x-27=0
a = 3; b = -18; c = -27;
Δ = b2-4ac
Δ = -182-4·3·(-27)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18\sqrt{2}}{2*3}=\frac{18-18\sqrt{2}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18\sqrt{2}}{2*3}=\frac{18+18\sqrt{2}}{6} $
| 2−3x−1=9−6x | | (7x-14)+(17x+124)=180 | | 2f-1=6 | | 8(x+23)=13(x+4) | | 5a-9=3a-1= | | 234=57-y | | 8*x+23=13*x+4 | | 5y+2=4y- | | 12.5y=18 | | (8x+78)=(7x+85) | | -26=u/3-8 | | -9–(9x-6)=3(4x+6) | | X2+30x-300=0 | | X2+50x-400=0 | | 5(x+3)=31 | | 6(k+12)3k=3 | | (9x+60)=(7x+76) | | (9x+66)+(5x-26)=180 | | 48+6k=10k–164 | | /7(5x−4)−1=14−8x | | (x-3)²-x²=4 | | 5x+12=2x+7 | | x-85+41=650 | | (3x+15)+(5x+141)=180 | | 6h+7=7h-25 | | 5a+29=0 | | x/22=193 | | 770/55*55*x=42 | | (7x+27)+(4x+32)=180 | | 4-5x=-2x+10 | | 7770/55*x=42 | | 2/3*3x+6=14 |